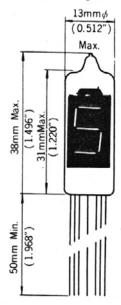
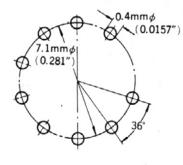
Dieter's Nixie Tube Data Archive

This file is a part of Dieter's Nixie- and display tubes data archive

If you have more datasheets, articles, books, pictures or other information about Nixie tubes or other display devices please let me know.


Thank you!

Document in this file	Nadler catalog – page covering the DA-1300 Numitron tube
Display devices in	DA-1300
this document	


File created by Dieter Waechter www.tube-tester.com

Nad le R

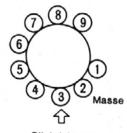

Abmessungen

Diagramm und Abmessungen des Sockels

Anschlüsse

Blickrichtung

DA-1300 Segment-Anzeigeröhre

mit 7 einzelnen Leuchtsegmenten in einer Ebene; daher extrem breiter Ablesewinkel.

Besonders entwickelt für kleine Anzeigegeräte (12 mm Zahlenhöhe) mit nur geringem Spannungs-/Strom-Bedarf. Ideal für IC-Decoder/Treiber. Farbfilter und Vorsatzlinsen sind anwendbar.

Besondere Vorteile

Geringe Segmentspannung: 5 V Gleich- oder Wechselspannung möglich.

Stabil: Schock- und Vibrationstests verändern nicht die Bildlinearität.

Lange Lebensdauer: Mehr als 100.000 Stunden, kaum Erwärmung durch Keramikaufbau im Vakuum-Glaskolben.

Helligkeit voll einstellbar: Durch einfache Spannungsregelung auch im direkten Sonnenlicht ablesbar. Von hell (5 V/23 mA pro Segment) auf dunkel (3,5 V/18 mA pro Segment). Gute Ablesung durch breites Lichtspektrum und schwarzen Hintergrund.

Dezimalpunkte-, Zeichen- und Buchstabenanzeigen sind auf Anfrage erhältlich.

Technische Daten

Anschluß-Nr. 345789

58

578

3456789 56789

Bild

Segmentgleichspannung: 5 V (3,5 V)

Segmentstrom : 23 mA (18 mA)

Zahlenanzeige : 0 bis 9

DA 1300

DM 13,75

Segment-Anordnung und Maße
6.6mm (0.760) E (0.760) E (0.760) (0.7