Dieter's Nixie Tube Data Archive

This file is a part of Dieter's Nixie- and display tubes data archive

If you have more datasheets, articles, books, pictures or other information about Nixie tubes or other display devices please let me know.

Thank you!

Document in this file	Rodan Okaya - Electronic parts catalog
	CD11, CD12, CD13, CD24, CD25, CD27, CD28, CD43, CD47, CD66,
	CD66P, CD91, CD94, CD95, FDB-5V15, FDB-5V30, FDF-5V15, FDF-
	5V30, FDG-5V15, FDG-5V30, FDH-5V15, FDH-5V30, FDK-5V15,
	FDL-3V15, GR-111a, GR-111P, GR-116D, GR-116P, MG-112F, MG-
	137, MG-17G

File created by Dieter Waechter www.tube-tester.com

〔2〕表示放電管

(1) 岡谷電機 (9・2)

計数機器用表示管

計粉機界田惠示管

计数機器 NDICA																										
直	流	用	3	С	DΙ	_	(DI	2	С	DI	3	С	DI	4	C	D2	4	C	D 2	5	. 0	D2	7	C	D28
91	形	Œ]	16		45.5 1.31		5)	77 P. I.		5)	ģ			-28 · 3 - 19		5)			<u>ال</u>	38 right - 30 right	72	5		- n.	3
接 (章) 矢印は A:アノー K:カソー IC:内部接 NP:リード行 NC:接続な	ド ド 売(接続せ: 片略, リー	△ #()										, , , , , , ,	, de	8.00 T.	3			90. 6.	· · · · · · · · · · · · · · · · · · ·		0., 0., 0.,	0	\$ 8 8			
構	造(表	1 is	4 容)	0	~ 9			0 ~ 9			0 ~ 9		+,	×.	÷		0 ~ 9			0 ~ 9		-	0 - 9		-	0 - 9
電気 気的	デ	9	単位	穀小 枝	乘學	最大	最小	標準	敖大	最小	標準	最大	最小	標準	岐大	岐小	標準	赦大	競小	標準	最大	較小	標準	競大	載小	標準 鼓
陽極供給正		Евь	Vdc	170		_	200			170			170			170			, 170			200			170	
	台 電 圧	Ez	Vdc			170	_		170			170	_		170		_	170			170			170		- 1
除極	電流	Ik	mAdc		2.5	3.5	3. 5	5.0	6.5	0.6	.0.9	1.2	1.5	2.5	3.5	1. 5	2. 25	3.0	1.5	2.5	3.5	7. 5	10	12.5	1.0	1.8 2
				(Ebb= Rp=1				= 200 V = 12 k Q			= 170 V = 33 k ⊆		(Ebb=	= 170 V = 10 k Q			= 170 \ = 10 k \$			= 170 V = 10 k S			= 200 ' = 5 k			= 170 Vdc = 15 k Q \
各陰極消	費電力	Pk	w	-	_	0.5			1			0.2	-		0.5	_	_	0.5	-	_	0.5	Ī —	_	2	-	- 0.
せん頭陰	梅電流	i k	mA	_	_	4.0	_		10	_	_	1.5	_		4.0	-	-	3.5	-	_	4.0	-		12.5	_	_
平均陰極質	旅範囲	1 K	mAdc	1. 5	~	3.5	3. 5	~	6.5	0.6	~	1.2	1.5	~	3.5	1. 5	~	3.0	1. 5	~	3.5	7. 5	~	12.5	1.0	~ 2
動作程度	美 戦 囲	Ta	t	10	~	+ 55	-10	~	+ 55	-10	~	+ 55	- 10	~	+ 55	-10	~	+ 55	- 10	~	+ 55	-10	~	+ 55	- 10	·~ +:
代 陽極供料	直流電圧	Евь	Vdc	170 200	250	300	200	250	300	170 20	00 250	300	170 20	0 250	300	170 2	00 250	300	170 2	00 250	300	200	250	300	170 2	00 250 3
前 直 列	抵 抗	Rp	KΩ	10 22	42	62	12	22	32	33 €	55 120	180	10 2	2 42	62	10	24 47	68	10	22 43	62	5	10	15	15	35 65 1
表的使用例	*	Rk(+)	KΩ																							
691 <u> </u>		<u> </u>	<u></u>				L																			
				[·																		1			1	
直	流	月	1	С	D43	3	(C D 4	7	C	D6	5 	С	D 9	<u> </u>	G F	۱۱- ۶	6 D	(D 9	4	(D 9	5	G F	R-III a
外	形	Œ	1	20.5		32 mar 27.5 mar	138	72.6 mar	220 mdx	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	45,	3mn 2 -36 + 2.3 -4	2 - 18 - 1	45	33nm	3 S		22 13 13 -1 2 mai	-34 -15 -	5	-63+3 79ma	- 16 - 76 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	5	125 t 5		Broat 0 23 51 22

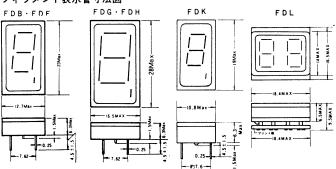
	外	形	į	¥	l		5	22 ± 1.5	1 1	76 \$ 11 4	-	0.5\$	A TO, 11	33mn - 38.1 + 2.3 - 47.6 mm	\$ 8	45	33 min 31 min	81.8		1.27 # 0.4 c	137.78	N/~a:		, , , , , , , , , , , , , , , , , , ,	5	125 t 5	0.50		-33mm - 39mm
A K I C N P	接 : 矢 ア カ 内 ー ト リ ・ 接 径 (・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	: : E(接 f略,	E面の 使せれ	事)		K(8)	-H	() K(5) () K(4) () K(3) () K(2) () K(1)	K(5)@ K(4)@K K(3)@ K(2)@ K(7) (0 k(1) (0 k(1) (0 k(0) (0 k(0)	K(4)@ K(3)@ K(2)@ K(2)@ K(\$ 300 \$ 300)K(7) (OK(8) (OK(9) (OK(9)	K(6)Q), K(5)Q), K(4)Q- K(3)Q- K(3)Q- K(1)Q-		\$ 5 C S S S S S S S S S S S S S S S S S S	060000 Q			K(B) K(7) K(B) K(B)		0 0 0 0	**************************************		K(#) () () () () () () () ()	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$\frac{1}{2}\frac{1}{2) (42) (64) (64) (64) (64) (64) (64) (64) (64
裸		造	(麦	示卢	9 客)		0 ~ 9)	T	0~9	1	0 ~	9 /	数点	0 ~	9 /	教点	0~9/	小数点	(右左)		0 ~ 9			0 ~ 9		0 ~	9 小	放点
*	気 的	#	_	*	単位	最小	標準	最大	最小	標準	最大	最小	標準	最大	最小	標準	最大	最小	標準	最大	最小	標準	最大	最小	標準	最大	最小	標準	最大
聯相	供給道	施育	Œ	Ebb	Vdc	170	_	_	250	_	_	170	_	_	170		_	170			200	_		200	_		170	_	_
故	电 朗 数	1 TE	Æ.	Ez	Vdc	_	_	170	_	-	200	_	_	170	_	_	170	_	_	170	_	_	170	-	_	170	-	_	170
陰	梅	Æ	流	Ik	mAdc	1.5	2. 25	3.0	17.5	25	32.5	1. 5	2. 25	3.0	1. 2	1.9	2.6		2.4		3. 5	5	6.5	12	15	18	1.5	2. 25	3.0
							b=170 p=10 k			= 250 = 5. 1 k			= 170 = 12 k			= 190 = 27 k			=180 =12 k	Vdc; Ω)		= 200 \ = 12 k			= 215 Y = 5 k S			= 190 \ = 20 k S	
各	会 極 消	黄龙	カ	Pk	W		_	0.5	Ι-	_	5	-	_	0.5	_	_	0.5	-	_	0.5	_	_	1	-	_	2.5	-	_	0.5
# /	ん頭陰	極電	焼	ik	m A	_		3.5	T -	_	35	-	_	3.5	_	_	3.0	-		4.0	_	_	10	_		18	-	-	3, 5
平 5	1 陰 極 電	流氣		Ik	mAdc	1.5	~	3.0	17.5	~	32.5	1. 5	~	3.0	1. 2	~	2.6	2. 2	~	3.8	3. 5	~	6.5	12.0	-	18.0	1.5	~	3.0
動	作温度		囲	Ta	tc	-10	-	+ 55	-10	~	+ 55	- 10	~	+ 55	-10	~	+ 55	-10	~	+ 55	-10	-	+ 55	-10	~	+ 55	-10	~	+ 55
14	陽極供給	直流電	tÆ.	Ebb	Vdc	170	200 25	0 300	1	250	300	190 2	00 25	300	190	200	230	180	200	250	200	250	300	200	250	300	190 2	250	300
表的	直列	銋	抗	Rp	KΩ	10	24 4	7 68		5. 1	6.8	Rk 20	24	47 68	Rk 2	7 33	47	Rk 12	20	43	12	22	32	4.3	7.5	11	20	24 47	68
B5)															1						1			1			1		
的使用		*		Rk(•)	KΩ				1			91	110 2	00 300	180	200	300	160	270	500	ł			1					- 1

岡谷電機(9・2)

計数機器用表示管・フイラメント表示管

計数機器用表示管 INDICATOR TUBE

III	יטוע	TUR	10													
	13	ル	スール		CI	D 66 F	כ	C	D9	1	C F	3 – 1 1	6 P	G F	11–5	ΙP
	外	形	Œ]	2 1	5,	33.741 47 6	ST - FT - ST - ST - ST - ST - ST - ST -		-33 ma 31 mar	28	2,000	2 1 13 13 13 13 13 13 13 13 13 13 13 13 1	221 1 81 1		33ms 39 ma
I C	1:アノ- (:カノ- C:内部	- ド 接続(接続 ド省略。リ	せね事)			\$\frac{1}{8}		900000		\$ \$ \$ \$ \$ \$ \$ \$ \$	0660EH 000		4000000 400000000000000000000000000000) (0) € 20 (0) € (30) (0) € (30) (0) € (30) (0)
構		造 (表 示 F	内 容)	0 -	~ 9 小	放点	0 ~	9 小蓑	点	0~9/	教点	(左右)	0 ~	9 小數	点
電	気	Br) ≠	- 9	単位	最小	標準	最大	最小	標準	最大	最小	標準	最大	最小	標準	最大
8 4	等供給	直流電	圧 ebb	Vdc	190			190		_	175			190		-
		せん頭電		Vdc			190	_	_	170	_	_	170	-	_	170
ŧ	人頭!	陰時電	統 ik	m Adc		* 915			約5			約14			≱)5. 5	
					(* 17	k Rp≃	190 V de	(dety!		90 Vak .8 k Ω	(dat y	Lo Rp =	200 V dc 2.5 k Ω	(duty)	ebb = 1 Rp = 5	90 V dc)
8 1	生梅 平	均消費電	カ Pk	W	-	_	0.5		_	0.3	_	_	0. 45	_		0. 45
せん	頭陰鳥	电流能	囲 ik	mA	9	~	20	2. 4	~	8	11	~	17	3	~	8
ψ.	均除梅	電流範	用 Ik	mAdc	1	~	2	0. 25	~	0.8	0. 5	~	1.9	0. 3	~	0.8
動	作量	度範	用 Ta	τ	- 10	~	+ 55	- 10	~	+ 55	- 10	~	+ 55	10	~	+ 55
15	關格供	輪直流電	Ŧ. ebb	Vdc	190	200	250	190	200	230		200	235	190 2	00 250	300
表的	it(列纸	π Rp	KΩ	2	2.7	7.4	Rk 6.	8 9.1	15		2. 5	5	5	7 18	27
使用例		•	Rk(-)	KΩ				36	47	82						
(9)	18	ルス!	†) tp	mS	0.05	~	0.5	0. 05	~	0.5	0.05	~	0.5	0. 05	~	0.5

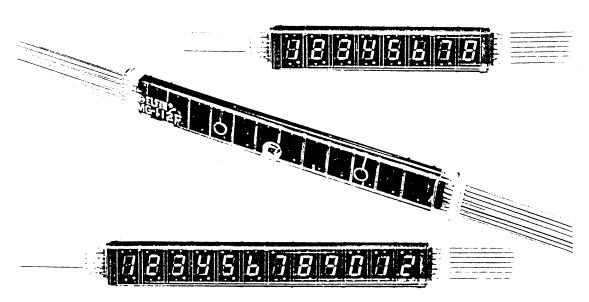

	パ	ルス	用	М	3 - 17	G	М	3 - 13	37
	外	形	\B	1 1 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 2	ė,	35 m 24 5+1 5	0.44		5. ——13.——5. ——35.mo. ——35.mo.
	接	続	図	K(e) K(b) K(K(q) K(1) K(n) K(c)	K(0) K(0) K(1)		(
	構	造(表示	内容)	0~9	及び/	小數点	0 ~ 9	0 及び/	小数点
電気的データ	放電阱			最小 190 一	標準 - - 約1.2 約0.4	最大 - 170	最小 180 一	標準 約2 約0.5	最大 180
最大定		陰極能統領 陰極 a ~ a 陰極 h (D 極能統範囲 陰極 a ~ a 陰極 h (D	mA p)mA	1 0. 4 0. 04 0. 02	~ ~ ~	4 1.5 0.6 0.4	1 0. 35 0. 04 0. 02	~ ~	4 1.0 0.6 0.4
格		鼠皮範囲 〔	sec Ta) ℃ Ta) ℃	50 -65 -10	~ ~	500 +70 +60	50 -65 -10	~ ~	500 +70 +60
代表的動作例	duty	χ₀ R	bb k k(+)	190 36 90	200 43 120	250 82 240	180 20 82	200 30 120	220 40 150

	直	流	用	МG	- 17	G	М	3 - 13	37
	外	形	Ø	1 + 2 2 1	8	3537	0.44	8	35 mm 36 mm
	接	続	X	٠ ٢ ٢ ٢		K 21 JK 11 K 12 'K-21	::		(DP) (DP) (S) (4) (g)
	構	造(表示	内容)	0 ~ 9	及びり	数点	0 ~ 9	及び小	数点
程気的データ	放 電車 陰極電	開始 電圧 硫酸棒 a:	(Ebb) Vdc (Ez) Vdc ~g mAdc (Dp) mAdc	数小 180 一 0. 28 0. 14	標準 ~ ~ 0.35 0.18	数大 一 160 0.42 0.22	較小 170 — 0.35 0.08	標準 ~ ~ 0. 45 0. 10	較大 170 0.55 0.12
散大	平均酸	陰梅電流(陰梅a~g 陰梅h(D 梅電流範囲	m A p)			1. 6 0. 6			0. 6 0. 15 0. 6
定格	保存的	陰極 a ~ g 陰極 b (D 盤 度 範 囲 盤 度 範 囲	p) (T∗}℃	0. 2 0. 1 -65 -10	~ ~	0.6 0.4 +70 +60	0.3 0.07 -65 -10	~ ~	0. 15 + 70 + 60
代表的動作例		給直流電圧		180 2	100 250 160 300 130 6 20	300 430	170 62 270	190 110 470	210 150 680

フィラメント表示管 FILAMENT DIGITAL DISPLAY

仕様 形名	表示内容	フィラメント 電 圧(V)	フィラメント 電流 (m A) (セグメント当り	輝度 (ft:L)	表示極寸法 (m/n)	外形寸法(mm) MAX (リード第高含まず)
F D B-5 V15	0~9 小數点				¥312 × 6	23×12.7×6.3
F D F-5 V15	+, -, 1, 小数点	標準	標準	4500	#y12 ^ 0	23 ^ 12. 1 ^ 0. 3
F D G-5 V15	0~9 小数点	5	15	4500	¥:15.6×9.2	28×16.5×6.3
F D H-5 V15	+, -, 1, 小教点	1 5 15			ky15.0 × 9.2	26 × 10, 3 × 0, 3
F D B-5 V30	0~9 小数点				#₁12×6	23×12.7×6.3
F D F-5 V30	+, -, 1, 小數点	標準	標件	8500	*912 ^ 0	23 × 12.7 × 0.3
F D G -5 V30	0~9 小數点	4. 5	28	8300	#₁15.6×9.2	28×16.5×6.3
F D H-5 V30	+, -, 1, 小數点	4.5	20		*915.0 \ 5.2	20 × 10. 3 × 0. 3
F D K - 5 V 15	0~9 小数点	標準 5	標準15	4500	約 8.2×4.2	19×10.8×6.3
FDL.3V15	0~99 2 ffi	標準3	標準15	4500	#) 8.2×4.2	16.5×18.4 × 9.5

フィラメント表示管寸法図


ELFIN® MULTI-DIGHT DISPLAY TUBE

The ELFIN® Multi-Digit Display Tube is specially designed for the purpose of reducing mounting cost to P/C board with high reliability.

The ELFIN® Multi-Digit Display is a neon gas-filled cold-cathode indicator tube which has plural seven (7) bar segments on a single plane surface.

The assembly cost and mounting space of the multidigit ELFIN are mininal, as all segments are silk screened and packaged in a flat glass envelope.

All charactors are displayed sharply with high intensity.

3. Electric Specifications

Cathode (Cold Cathode)
Color of Display...... (Neon Red)

	Minimum	Standard	Maximum	Unit
Peak Anode Voltage (ebb)				
tp = 0.1 msec. duty cycle = 1/14	190			Volt
Break down Voltage (eZ)				7011
tp = 0.1 msec. duty cycle = 1/14	_	_	170	Volt
Peak Cathode Current (iK)			.,,	
Cathodes "a" – "g" ebb = 190V Pk = 23 KΩ				
tp = 0.1 msec duty cycle = 1/14	.approx.1.6			mA
Cathodes "h" ebb = 1.90V Rk = 91 KΩ	• •			
tp 0.1 msec. duty cycle = 1/14	approx. 0.7			mΑ
Pre-bias Voltage [Epb]		100	_	Vdc
This is applied to the shield, anode, cathode, clighting.		electrodes	that are not	